

Кафедра ГВИЭ НИУ «МЭИ»

Тема: Обоснование параметров систем микрогенирации на основе возобновляемых источников энергии

Выполнил: Студент группы ИГ-02-16 Моздер Н.Ю.

Цели и задачи

Цель работы:

Выбор основного оборудования солнечной станции и оценка экономической эффективности.

Задачи:

- Описание объекта потребителя
- Расчет ресурсов солнечной радиации в выбранной точке
- Выбор схемы в соответствии с ГОСТ 56124-2014
- Расчет выработки электроэнергии
- Расчет срока окупаемости

Закон о микрогенерации

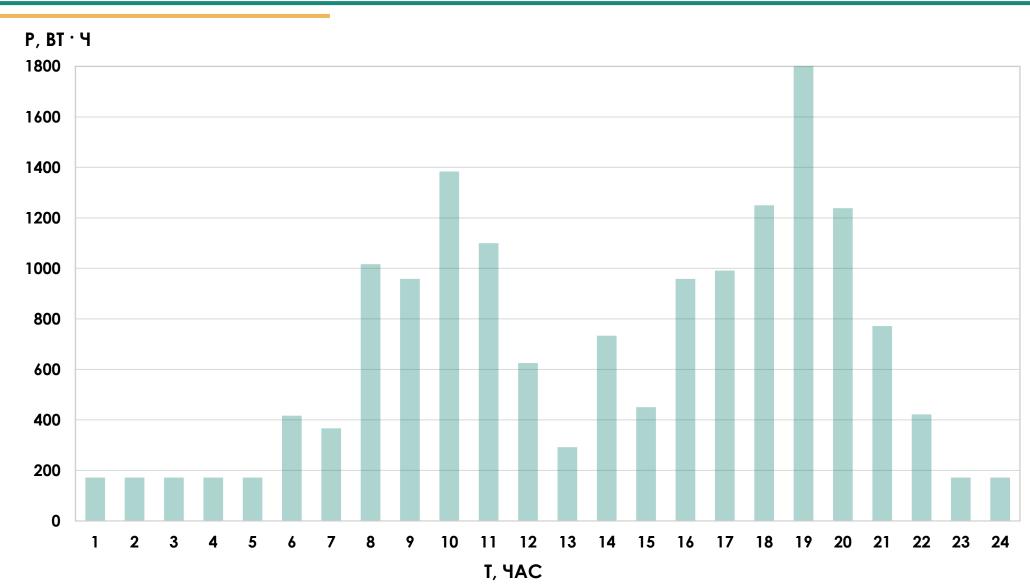
Федеральный закон от 27.12.2019 N 471-ФЗ "О внесении изменений в Федеральный закон "Об электроэнергетике" в части развития микрогенерации"

Пункт 2.1.

«Электрическая энергия, произведенная на объектах микрогенерации и не потребленная их собственниками и иными законными владельцами в целях удовлетворения собственных бытовых и (или) производственных нужд, реализуется на розничных рынках в порядке, установленном основными положениями функционирования розничных рынков...»

Общие данные о потребителе

Выбранная для расчетов точка находится в Волгоградской области, Быковского района. Географические координаты 49° 45' северной широты, 45° 35' восточной долготы.

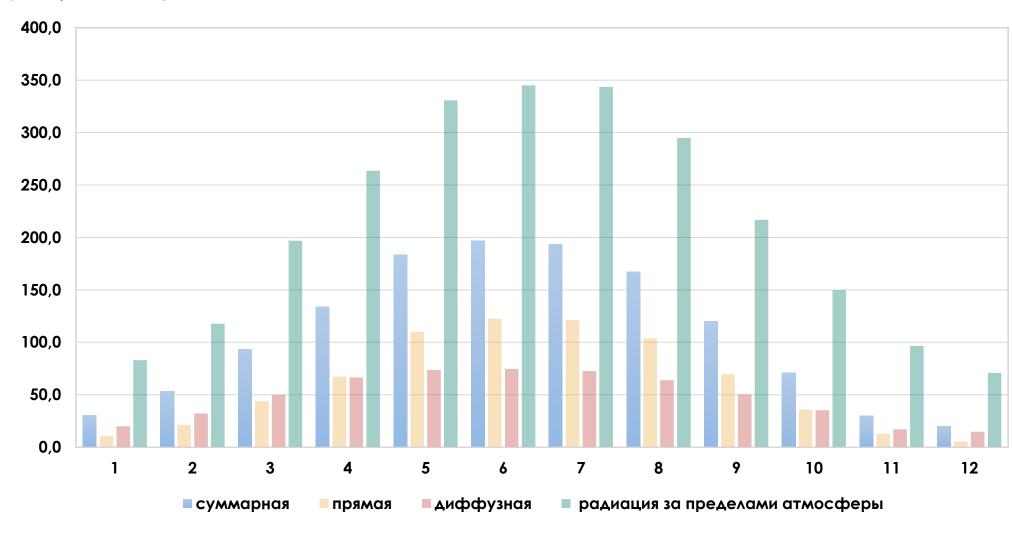


Состав и потребление электроприемников

Электроприемник	Потребляемая мощность, [Вт]	Количество, [шт.]	Время рабооты, [ч]	Расходи ЭЭ в сутки, [кВт·ч]
Компьютер	300	1	4,5	1,35
Телевизор	100	1	6	0,6
Микроволновая печь	1500	1	0,2	0,3
Холодильник	1000	1	4	4
Стиральная машина	1600	1	0,57	0,91
Чайник	2000	1	0,25	0,5
Насос водоснабжения	1500	1	1,25	1,875
Общее освещение	250	1	5	1,25
Уличное освещение	5	1	10	0,05
Электросварка	5000	1	0,33	1,67
Токарный станок	3000	1	0,5	1,5
Электродвигатели	1000	1	1,5	1,5
Сверлильный станок	1000	1	0,5	0,5
			Итог в сутки	16,00

Суточный график нагрузки

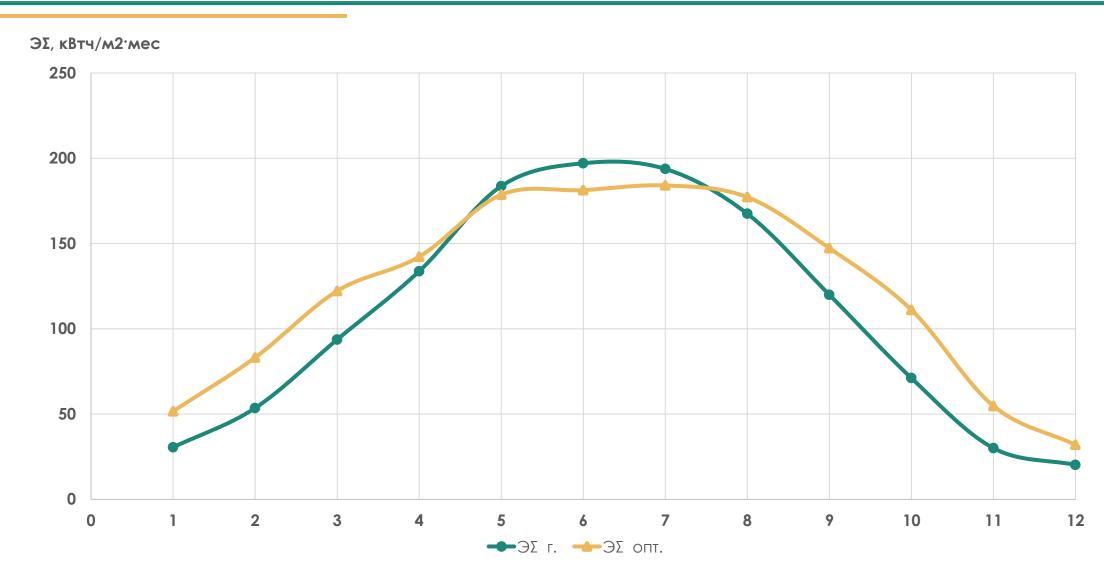
Приход солнечной радиации по базе НПС


Для работы со справочником необходимо найти ближайшую с объектом метеостанцию, данные по которой есть в базе данных. Ближайшей АМС к заданной точке А в СБД «НПС» является АМС Волгоград (ф=48,8°с.ш.; ψ =44,7° в.д.).

Вид	1	2	3	4	5	6	7	8	9	10	11	12	Год
яц Э _∑ г,													
кВт.ч/м ² .	30,5	53,5	93,7	133,8	183,7	197,1	193,8	167,5	120,0	71,1	30,0	20,2	1295
мес													
Θ_{np}^{r} ,	10,5	21,3	43,9	67,3	1100	100.4	121,2	102.7	/O 7	2/0	120	F 2	724
кВт∙ч/м²∙ мес	10,5	21,3	43,7	67,3	110,0	122,4	121,2	103,7	69,7	36,0	13,0	5,3	/ 24
Э _д г, кВт.ч/м ² .	20,0	32,2	49,8	66,5	73,7	74,7	72,5	63,8	50,3	35,1	17,0	14,8	570
мес													
Э ₀ г, кВт.ч/м ² . сут	2,68	4,21	6,35	8,78	10,67	11,50	11,08	9,51	7,22	4,83	3,22	2,29	-
ho, o.e.	0,6	0,6	0,4	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,3	0,4	0,29

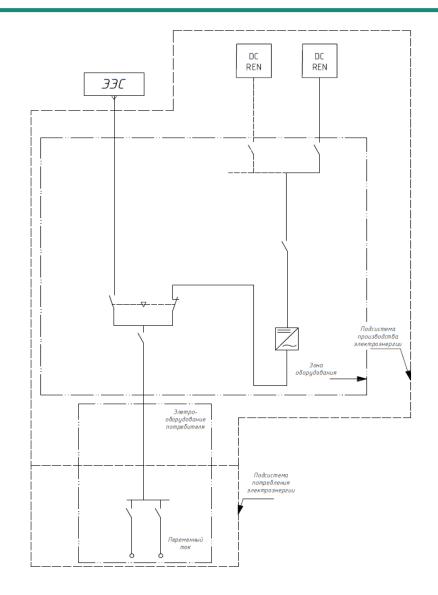
Годовой приход солнечной радиации

Э, КВТ Ч/М2 В МЕСЯЦ



Месячные и годовые приходы суммарной СР на площадку ориентированную под разными углами

	ЭΣ, кВтч/м2 ⁻ мес									
Месяц\в	0	10	20	30	40	50	60	70	80	90
1	30,483	36,790	42,552	47,561	51,630	54,603	56,356	56,800	55,890	53,618
2	53,511	62,659	70,858	77,775	83,143	86,746	88,420	88,060	85,622	81,126
3	93,689	103,676	111,972	118,230	122,174	123,595	122,359	118,414	111,795	102,619
4	133,750	139,531	143,018	143,983	142,278	137,840	130,691	120,935	108,762	94,434
5	183,675	187,629	188,232	185,261	178,651	168,461	154,891	138,245	118,931	97,476
6	197,083	198,546	196,474	190,730	181,316	168,361	152,133	133,017	111,510	88,296
7	193,750	196,954	196,498	192,212	184,071	172,181	156,803	138,313	117,182	94,030
8	167,486	175,282	179,654	180,346	177,220	170,255	159,573	145,406	128,089	108,067
9	119,944	130,882	139,298	144,848	147,277	146,426	142,233	134,740	124,090	110,523
10	71,083	82,665	93,603	103,237	111,086	116,793	119,873	120,023	117,178	111,366
11	30,000	37,113	43,913	49,876	54,754	58,370	60,585	61,304	60,476	58,097
12	20,150	23,670	26,895	29,704	31,985	33,644	34,606	34,816	34,244	32,881
Год	1294,606	1375,396	1432,969	1463,764	1465,585	1437,275	1378,523	1290,074	1173,769	1032,534

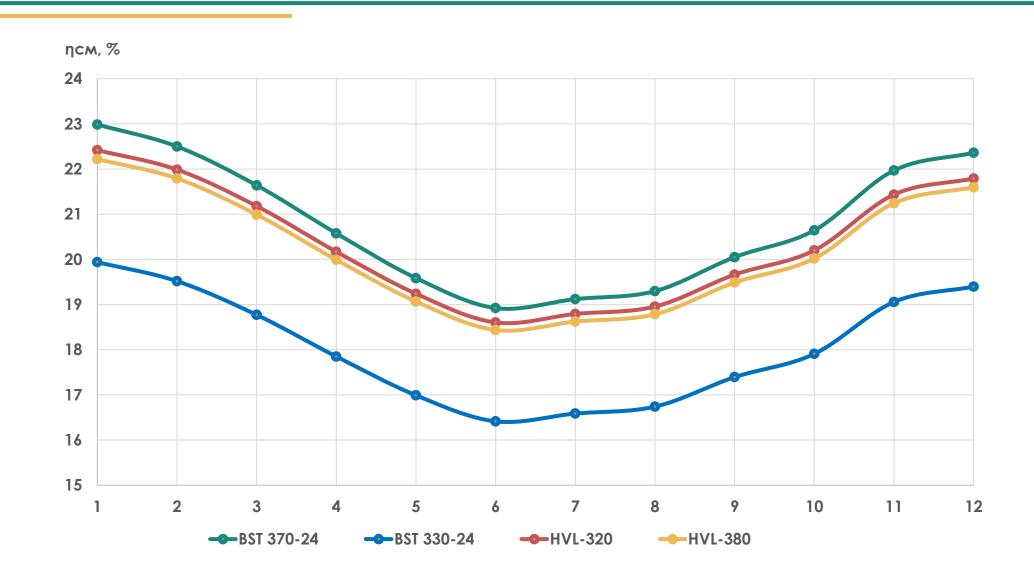

Среднемесячные значения прихода СР на горизонтальную и оптимально наклоненную площадку

Выбор принципиальной электрической схемы станции

Схема для синхронизированного электроснабжения на основе ВИЭ с возможностью покупки и продажи электроэнергии, в соответствии с ГОСТ 56124-2014

Технические характеристики солнечных модулей

	BST 370-24	BST 330-24	HVL-320	HVL-380
<i>Wp,</i> Вт	370	330	320	380
Ump, B	39,30	37,80	36,44	44,28
Imp, A	9,41	8,73	8,79	9,05
F, M ²	1,94	1,93	1,67	2,00
Iкз, A	9,85	9,22	9,27	9,05
Uxx, B	48,30	45,50	44,11	52,66
NOCT, °C	45	45	38,8	38,8
η _{модуля} , %	19,70	17,09	19,17	19,00
U _{DC} , B	1500	1000	1500	1500
Цена, руб.	14400	13650	15000	17790


Изменение среднемесячных значений КПД солнечного модуля в течении года

Месяц	1	2	3	4	5	6	7	8	9	10	11	12
BST 370	22,99	22,50	21,64	20,58	19,59	18,92	19,12	19,30	20,05	20,64	21,97	22,36
BST 330	19,94	19,52	18,77	17,85	16,99	16,41	16,59	16,74	17,39	17,91	19,06	19,40
HVL 320	22,42	21,99	21,18	20,17	19,24	18,60	18,79	18,95	19,66	20,20	21,43	21,79
HVL 380	22,22	21,79	20,99	19,99	19,07	18,44	18,62	18,79	19,49	20,02	21,24	21,60

Наиболее высокий КПД солнечного модуля получается в зимние месяцы, в летние месяцы КПД достигает минимального значения. Из представленных моделей фотоэлектрических преобразователей наивысшим КПД обладает солнечный модуль BST 370.

Изменение КПД солнечного модуля в течении года

Выбор оптимального солнечного модуля

Далее определяется годовая выработка солнечного модуля, коэффициент использования солнечного модуля, удельная выработка солнечного модуля.

Модуль	HVL-380	BST 370	BST 330	HVL-320
$N_{C\PhiЭy}^{гod}$, к $BT\cdotY/гod$	540,61	540,83	466,76	462,19
Ки, %	16,48	16,69	16,15	16,49
Wуд, кВт ч/год ·м²	274,31	278,78	241,85	276,76

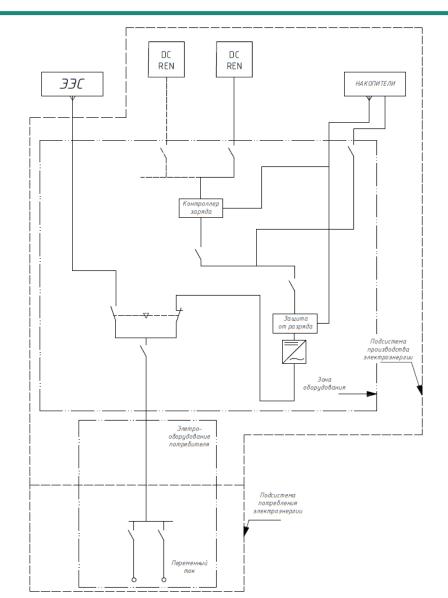
Наилучшими показателями обладают: монокристаллический модуль BST 370 и гетероструктурный фотоэлектрический модуль HVL-380. Модуль HVL-380 незначительно лучше по показателям относительно модуля BST 370, поэтому для дальнейших расчетов выбираем монокристаллический модуль BST 370 т.к. он дешевле модуля HVL-380 на 3390 рублей.

Результаты расчета схемы с возможностью продаж и покупки ЭЭ

Далее определяется срок окупаемости СЭС, для этого необходимо определить количество модулей. Установленная мощность ограничивается, в соответствии с законом о микрогенерации, 15 кВт.

Кол-во	5	10	15	20	25	30	35	40
Э _{сэс} ,кВт'ч	2650,07	5300,15	7950,22	10600,30	13250,37	15900,45	18550,52	21200,60
Э _{куп} , кВт ^ч	3775,90	3004,73	2739,26	2573,14	2473,97	2409,29	2366,22	2337,31
Эпрод, кВт.ч	586,58	2465,48	4850,09	7334,05	9884,96	12470,35	15077,35	17698,52
$N_{ m yct}$, кВт	1,85	3,7	5,55	7,4	9,25	11,1	12,95	14,8
S _{см} , руб.	72000	144000	216000	288000	360000	432000	504000	576000
S _{сэс} , руб.	138461,5	276923	415385	553846	692308	830769	969231	1107692
D _{прод} , руб.	1618,153	6801,29	13379,5	20231,7	27268,6	34400,7	41592,4	48823,1
D _{куп} , руб.	11440,98	9104,32	8299,96	7796,62	7496,14	7300,15	7169,63	7082,05
D _{год} , руб.	-9822,8	-2303,0	5079,5	12435,1	19772,5	27100,5	34422,7	41741,1
t _{co} , лет	-	-	82	45	35	31	28	27

Зависимость срока окупаемости от величины тарифа

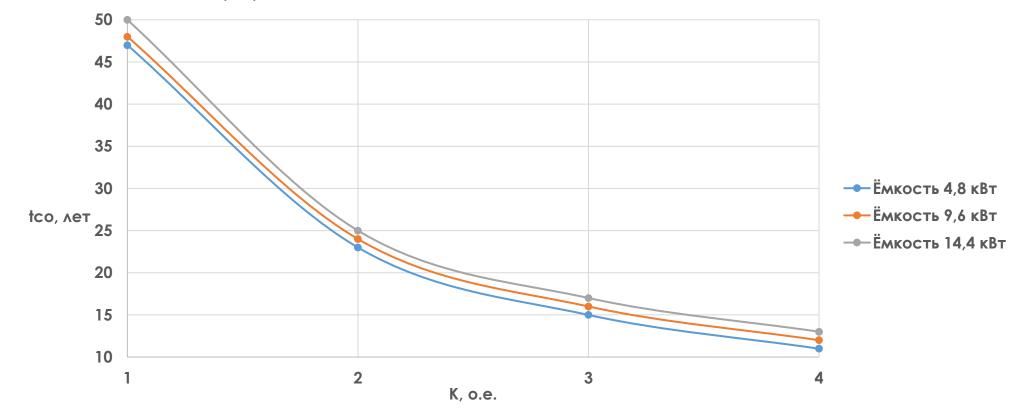

K, o.e.	1	1,5	2	2,5	3	3,5
S _{сэс} , руб.	1107692,31	1107692,31	1107692,31	1107692,31	1107692,31	1107692,31
D _{прод} , руб.	48823,12	73271,85	97695,81	122119,76	146543,71	170967,66
D _{куп} , руб.	7082,05	7082,05	7082,05	7082,05	7082,05	7082,05
D _{год} , руб.	41741,08	66189,81	90613,76	115037,71	139461,66	163885,61
t _{co} , лет	27	17	12	10	8	7

Таким образом, увеличение тарифа продажи электроэнергии в сеть в 2,5 раза сократят срок окупаемости до 10 лет и сделают установку СЭС для частного потребителя наиболее рентабельной, относительно существующего на данный момент тарифа.

Выбор принципиальной электрической схемы станции

Схема для синхронизированного электроснабжения на основе ВИЭ с накопителем и возможностью покупки и продажи электроэнергии, в соответствии с ГОСТ 56124-2014

Результаты расчета схемы с АКБ


Результаты расчета для различного состава оборудования солнечной станции. В качестве тарифа продажи принимаем нерегулируемую цену на электроэнергию на оптовом рынке Волгоградской области.

Кол-во модулей	20			30			40		
Ёмкость, кВт	4,8	9,6	14,4	4,8	9,6	14,4	4,8	9,6	14,4
Э _{уст} , кВт	7,4	7,4	7,4	11,1	11,1	11,1	14,8	14,8	14,8
Э _{прод} , кВт:ч	5802,6	4771,5	4687,5	10685,1	9787,9	9485,9	15665,4	14829,2	14597,1
Э _{куп} , кВт'ч	1673,5	667,9	595,8	1397,0	366,9	224,5	1318,9	249,6	86,1
Sсэс, руб.	970660	1041320	1111980	1420660	1491320	1561980	1870660	1941320	2011980
Опрод. , руб.	16007,1	13162,7	12931,1	29476,1	27001,0	26167,8	43214,8	40907,9	40267,7
Окуп. , руб.	5070,8	2023,7	1805,5	4233,1	1112,0	680,3	3996,5	756,3	261,0
D год, руб.	10936,3	11138,9	11125,6	25243,0	25889,0	25487,5	39218,2	40151,6	40006,7
тсо, лет	89	93	100	56	58	61	47	48	50

Зависимость срока окупаемости от величины тарифа

Для рассмотрения зависимости срока окупаемости от увеличения тарифа, используем станцию с 40 солнечными модулями. Из расчета по существующему тарифу видно, что данная станция является оптимальной, с точки зрения экономической эффективности.

Заключение

Схема	Солнечная станция без АКБ	Солнечная станция с АКБ
Количество модулей	40	40
Ёмкость АКБ, кВт	-	4,8
Стоимость станции, руб.	1107692	1870660
Прибыль от продажи ЭЭ, руб.	48823	43214
Срок окупаемости, лет.	27	47
Достижение экономической эффективность при тарифе, о.е.	2,5	4